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Preface

Numerical Analysis is a text for students of engineering, science, mathematics, and
computer science who have completed elementary calculus and matrix algebra.

The primary goal is to construct and explore algorithms for solving science and engi-
neering problems. The not-so-secret secondary mission is to help the reader locate
these algorithms in a landscape of some potent and far-reaching principles. These
unifying principles, taken together, constitute a dynamic field of current research and
development in modern numerical and computational science.

The discipline of numerical analysis is jam-packed with useful ideas. Textbooks
run the risk of presenting the subject as a bag of neat but unrelated tricks. For a deep
understanding, readers need to learn much more than how to code Newton’s Method,
Runge–Kutta, and the Fast Fourier Transform. They must absorb the big principles,
the ones that permeate numerical analysis and integrate its competing concerns of
accuracy and efficiency.

The notions of convergence, complexity, conditioning, compression, and orthogo-
nality are among the most important of the big ideas. Any approximation method
worth its salt must converge to the correct answer as more computational resources
are devoted to it, and the complexity of a method is a measure of its use of these
resources. The conditioning of a problem, or susceptibility to error magnification, is
fundamental to knowing how it can be attacked. Many of the newest applications
of numerical analysis strive to realize data in a shorter or compressed way. Finally,
orthogonality is crucial for efficiency in many algorithms, and is irreplaceable where
conditioning is an issue or compression is a goal.

In this book, the roles of these five concepts in modern numerical analysis are
emphasized in short thematic elements labeled Spotlight. They comment on the topic
at hand and make informal connections to other expressions of the same concept else-
where in the book. We hope that highlighting the five concepts in such an explicit way
functions as a Greek chorus, accentuating what is really crucial about the theory on
the page.

Although it is common knowledge that the ideas of numerical analysis are vital to
the practice of modern science and engineering, it never hurts to be obvious. The fea-
ture entitled Reality Check provide concrete examples of the way numerical methods
lead to solutions of important scientific and technological problems. These extended
applications were chosen to be timely and close to everyday experience. Although it
is impossible (and probably undesirable) to present the full details of the problems,
the Reality Checks attempt to go deeply enough to show how a technique or algo-
rithm can leverage a small amount of mathematics into a great payoff in technological
design and function. The Reality Checks were popular as a source of student projects
in previous editions, and they have been extended and amplified in this edition.

NEW TO THIS EDITION

Features of the third edition include:

• Short URLs in the side margin of the text (235 of them in all) take students directly
to relevant content that supports their use of the textbook. Specifically:

◦ MATLAB Code: Longer instances of MATLAB code are available for students
in *.m format. The homepage for all of the instances of MATLAB code is
goo.gl/VxzXyw.
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◦ Solutions to Selected Exercises: This text used to be supported by a Student Solu-
tions Manual that was available for purchase separately. In this edition we are
providing students with access solutions to selected exercises online at no extra
charge. The homepage for the selected solutions is goo.gl/2j5gI7.

◦ Additional Examples: Each section of the third edition is enhanced with extra new
examples, designed to reinforce the text exposition and to ease the reader’s tran-
sition to active solution of exercises and computer problems. The full worked-out
details of these examples, more than one hundred in total, are available online.
Some of the solutions are in video format (created by the author). The homepage
for the solutions to Additional Examples is goo.gl/lFQb0B.

◦ NOTE: The homepage for all web content supporting the text is
goo.gl/zQNJeP.

• More detailed discussion of several key concepts has been added in this edi-
tion, including theory of polynomial interpolation, multi-step differential equation
solvers, boundary value problems, and the singular value decomposition, among
others.

• The Reality Check on audio compression in Chapter 11 has been refurbished and
simplified, and other MATLAB codes have been added and updated throughout
the text.

• Several dozen new exercises and computer problems have been added to the third
edition.

TECHNOLOGY

The software package MATLAB is used both for exposition of algorithms and as
a suggested platform for student assignments and projects. The amount of MATLAB
code provided in the text is carefully modulated, due to the fact that too much tends to
be counterproductive. More MATLAB code is found in the early chapters, allowing
the reader to gain proficiency in a gradual manner. Where more elaborate code is
provided (in the study of interpolation, and ordinary and partial differential equations,
for example), the expectation is for the reader to use what is given as a jumping-off
point to exploit and extend.

It is not essential that any particular computational platform be used with
this textbook, but the growing presence of MATLAB in engineering and science
departments shows that a common language can smooth over many potholes. With
MATLAB, all of the interface problems—data input/output, plotting, and so on—are
solved in one fell swoop. Data structure issues (for example those that arise when
studying sparse matrix methods) are standardized by relying on appropriate com-
mands. MATLAB has facilities for audio and image file input and output. Differential
equations simulations are simple to realize due to the animation commands built into
MATLAB. These goals can all be achieved in other ways. But it is helpful to have
one package that will run on almost all operating systems and simplify the details so
that students can focus on the real mathematical issues. Appendix B is a MATLAB
tutorial that can be used as a first introduction to students, or as a reference for those
already familiar.

SUPPLEMENTS

The Instructor’s Solutions Manual contains detailed solutions to the odd-numbered
exercises, and answers to the even-numbered exercises. The manual also shows how to
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use MATLAB software as an aid to solving the types of problems that are presented
in the Exercises and Computer Problems.

DESIGNING THE COURSE

Numerical Analysis is structured to move from foundational, elementary ideas at the
outset to more sophisticated concepts later in the presentation. Chapter 0 provides
fundamental building blocks for later use. Some instructors like to start at the begin-
ning; others (including the author) prefer to start at Chapter 1 and fold in topics from
Chapter 0 when required. Chapters 1 and 2 cover equation-solving in its various forms.
Chapters 3 and 4 primarily treat the fitting of data, interpolation and least squares
methods. In chapters 5–8, we return to the classical numerical analysis areas of con-
tinuous mathematics: numerical differentiation and integration, and the solution of
ordinary and partial differential equations with initial and boundary conditions.

Chapter 9 develops random numbers in order to provide complementary methods
to Chapters 5–8: the Monte-Carlo alternative to the standard numerical integration
schemes and the counterpoint of stochastic differential equations are necessary when
uncertainty is present in the model.

Compression is a core topic of numerical analysis, even though it often hides in
plain sight in interpolation, least squares, and Fourier analysis. Modern compression
techniques are featured in Chapters 10 and 11. In the former, the Fast Fourier Trans-
form is treated as a device to carry out trigonometric interpolation, both in the exact
and least squares sense. Links to audio compression are emphasized, and fully car-
ried out in Chapter 11 on the Discrete Cosine Transform, the standard workhorse for
modern audio and image compression. Chapter 12 on eigenvalues and singular values
is also written to emphasize its connections to data compression, which are growing in
importance in contemporary applications. Chapter 13 provides a short introduction
to optimization techniques.

Numerical Analysis can also be used for a one-semester course with judicious
choice of topics. Chapters 0–3 are fundamental for any course in the area. Separate
one-semester tracks can be designed as follows:

Chapters 
4, 6, 8, 9, 13 

Chapters 
4, 10, 11, 12

Chapters  
5, 6, 7, 8 

Chapters 
0  3

traditional calculus/
differential equations

concentration

discrete mathematics
emphasis on orthogonality

and compression

financial engineering
concentration
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C H A P T E R

0
Fundamentals
This introductory chapter provides basic building
blocks necessary for the construction and understand-
ing of the algorithms of the book. They include fun-
damental ideas of introductory calculus and function
evaluation, the details of machine arithmetic as it is car-
ried out on modern computers, and discussion of the
loss of significant digits resulting from poorly designed
calculations.

After discussing efficient methods for evaluating
polynomials, we study the binary number system, the
representation of floating point numbers, and the com-
mon protocols used for rounding. The effects of the
small rounding errors on computations are magnified
in ill-conditioned problems. The battle to limit these
pernicious effects is a recurring theme throughout the
rest of the chapters.

The goal of this book is to present and discuss methods of solving mathematical
problems with computers. The most fundamental operations of arithmetic are

addition and multiplication. These are also the operations needed to evaluate a poly-
nomial P(x) at a particular value x . It is no coincidence that polynomials are the basic
building blocks for many computational techniques we will construct.

Because of this, it is important to know how to evaluate a polynomial. The reader
probably already knows how and may consider spending time on such an easy problem
slightly ridiculous! But the more basic an operation is, the more we stand to gain by
doing it right. Therefore we will think about how to implement polynomial evaluation
as efficiently as possible.

0.1 EVALUATING A POLYNOMIAL

What is the best way to evaluate

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1,

say, at x = 1/2? Assume that the coefficients of the polynomial and the number 1/2 are
stored in memory, and try to minimize the number of additions and multiplications
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required to get P(1/2). To simplify matters, we will not count time spent storing and
fetching numbers to and from memory.

METHOD 1 The first and most straightforward approach is

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1 = 5

4
. (0.1)

The number of multiplications required is 10, together with 4 additions. Two of the
additions are actually subtractions, but because subtraction can be viewed as adding
a negative stored number, we will not worry about the difference.

There surely is a better way than (0.1). Effort is being duplicated—operations
can be saved by eliminating the repeated multiplication by the input 1/2. A better
strategy is to first compute (1/2)4, storing partial products as we go. That leads to the
following method:

METHOD 2 Find the powers of the input number x =1/2 first, and store them for future use:

1
2

∗ 1
2

=
(

1
2

)2

(
1
2

)2

∗ 1
2

=
(

1
2

)3

(
1
2

)3

∗ 1
2

=
(

1
2

)4

.

Now we can add up the terms:

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2

− 1 = 5
4
.

There are now 3 multiplications of 1/2, along with 4 other multiplications. Counting
up, we have reduced to 7 multiplications, with the same 4 additions. Is the reduction
from 14 to 11 operations a significant improvement? If there is only one evaluation
to be done, then probably not. Whether Method 1 or Method 2 is used, the answer
will be available before you can lift your fingers from the computer keyboard. How-
ever, suppose the polynomial needs to be evaluated at different inputs x several times
per second. Then the difference may be crucial to getting the information when it is
needed.

Is this the best we can do for a degree 4 polynomial? It may be hard to imagine
that we can eliminate three more operations, but we can. The best elementary method
is the following one:

METHOD 3 (Nested Multiplication) Rewrite the polynomial so that it can be evaluated from the
inside out:

P(x) = −1 + x(5 − 3x + 3x2 + 2x3)

= −1 + x(5 + x(−3 + 3x + 2x2))

= −1 + x(5 + x(−3 + x(3 + 2x)))

= −1 + x ∗ (5 + x ∗ (−3 + x ∗ (3 + x ∗ 2))). (0.2)

Here the polynomial is written backwards, and powers of x are factored out of the rest
of the polynomial. Once you can see to write it this way—no computation is required
to do the rewriting—the coefficients are unchanged. Now evaluate from the inside out:
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multiply
1
2

∗ 2, add + 3 → 4

multiply
1
2

∗ 4, add − 3 → −1

multiply
1
2

∗ −1, add + 5 → 9
2

multiply
1
2

∗ 9
2
, add − 1 → 5

4
. (0.3)

This method, called nested multiplication or Horner’s method, evaluates the polyno-
mial in 4 multiplications and 4 additions. A general degree d polynomial can be eval-
uated in d multiplications and d additions. Nested multiplication is closely related to
synthetic division of polynomial arithmetic.

The example of polynomial evaluation is characteristic of the entire topic of com-
putational methods for scientific computing. First, computers are very fast at doing
very simple things. Second, it is important to do even simple tasks as efficiently as
possible, since they may be executed many times. Third, the best way may not be the
obvious way. Over the last half-century, the fields of numerical analysis and scientific
computing, hand in hand with computer hardware technology, have developed effi-
cient solution techniques to attack common problems.

While the standard form for a polynomial c1 + c2x + c3x2 + c4x3 + c5x4 can be
written in nested form as

c1 + x(c2 + x(c3 + x(c4 + x(c5)))), (0.4)

some applications require a more general form. In particular, interpolation calcula-
tions in Chapter 3 will require the form

c1 + (x − r1)(c2 + (x − r2)(c3 + (x − r3)(c4 + (x − r4)(c5)))), (0.5)

where we call r1,r2,r3, and r4 the base points. Note that setting r1 = r2 = r3 = r4 = 0
in (0.5) recovers the original nested form (0.4).

The

MATLAB code
shown here can be found
at goo.gl/XjtZ1F

following MATLAB code implements the general form of nested multiplica-
tion (compare with (0.3)):

%Program 0.1 Nested multiplication
%Evaluates polynomial from nested form using Horner’s Method
%Input: degree d of polynomial,
% array of d+1 coefficients c (constant term first),
% x-coordinate x at which to evaluate, and
% array of d base points b, if needed
%Output: value y of polynomial at x
function y=nest(d,c,x,b)
if nargin<4, b=zeros(d,1); end
y=c(d+1);
for i=d:-1:1
y = y.*(x-b(i))+c(i);

end

Running this MATLAB function is a matter of substituting the input data, which
consist of the degree, coefficients, evaluation points, and base points. For example,
polynomial (0.2) can be evaluated at x = 1/2 by the MATLAB command
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>> nest(4,[-1 5 -3 3 2],1/2,[0 0 0 0])

ans =

1.2500

as we found earlier by hand. The file nest.m, as the rest of the MATLAB code shown
in this book, must be accessible from the MATLAB path (or in the current directory)
when executing the command.

If the nest command is to be used with all base points 0 as in (0.2), the abbrevi-
ated form

>> nest(4,[-1 5 -3 3 2],1/2)

may be used with the same result. This is due to the nargin statement in nest.m. If
the number of input arguments is less than 4, the base points are automatically set to
zero.

Because of MATLAB’s seamless treatment of vector notation, the nest command
can evaluate an array of x values at once. The following code is illustrative:

>> nest(4,[-1 5 -3 3 2],[-2 -1 0 1 2])

ans =

-15 -10 -1 6 53

Finally, the degree 3 interpolating polynomial

P(x) = 1 + x

(
1
2

+ (x − 2)

(
1
2

+ (x − 3)

(
−1

2

)))

from Chapter 3 has base points r1 = 0,r2 = 2,r3 = 3. It can be evaluated at x = 1 by

>> nest(3,[1 1/2 1/2 -1/2],1,[0 2 3])

ans =

0

� EXAMPLE 0.1 Find an efficient method for evaluating the polynomial P(x) = 4x5 + 7x8 − 3x11 +
2x14.

Some rewriting of the polynomial may help reduce the computational effort
required for evaluation. The idea is to factor x5 from each term and write as a poly-
nomial in the quantity x3:

P(x) = x5(4 + 7x3 − 3x6 + 2x9)

= x5 ∗ (4 + x3 ∗ (7 + x3 ∗ (−3 + x3 ∗ (2)))).

For each input x , we need to calculate x ∗ x = x2, x ∗ x2 = x3, and x2 ∗ x3 = x5 first.
These three multiplications, combined with the multiplication of x5, and the three
multiplications and three additions from the degree 3 polynomial in the quantity x3

give the total operation count of 7 multiplies and 3 adds per evaluation. �
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� ADDITIONAL
EXAMPLES

1. Use nested multiplication to evaluate the polynomial
P(x) = x6 − 2x5 + 3x4 − 4x3 + 5x2 − 6x + 7 at x = 2.

2. Rewrite the polynomial P(x) = 3x18 − 5x15 + 4x12 + 2x6 − x3 + 4 in nested form.
How many additions and how many multiplications are required for each input x?

Solutions for Additional Examples can be found at goo.gl/BE9ytE

0.1 Exercises

1. Rewrite
Solutions

for Exercises
numbered in blue
can be found at
goo.gl/qeVIvL

the following polynomials in nested form. Evaluate with and without nested form
at x = 1/3.

(a) P(x) = 6x4 + x3 + 5x2 + x + 1
(b) P(x) = −3x4 + 4x3 + 5x2 − 5x + 1
(c) P(x) = 2x4 + x3 − x2 + 1

2. Rewrite the following polynomials in nested form and evaluate at x = −1/2:

(a) P(x) = 6x3 − 2x2 − 3x + 7
(b) P(x) = 8x5 − x4 − 3x3 + x2 − 3x + 1
(c) P(x) = 4x6 − 2x4 − 2x + 4

3. Evaluate P(x) = x6 − 4x4 + 2x2 + 1 at x = 1/2 by considering P(x) as a polynomial in
x2 and using nested multiplication.

4. Evaluate the nested polynomial with base points P(x) = 1 + x(1/2 + (x − 2)(1/2+
(x − 3)(−1/2))) at (a) x = 5 and (b) x = −1.

5. Evaluate the nested polynomial with base points P(x) = 4 + x(4 + (x − 1)(1 + (x − 2)

(3 + (x − 3)(2)))) at (a) x = 1/2 and (b) x = −1/2.

6. Explain how to evaluate the polynomial for a given input x , using as few operations as
possible. How many multiplications and how many additions are required?
(a) P(x) = a0 + a5x5 + a10x10 + a15x15

(b) P(x) = a7x7 + a12x12 + a17x17 + a22x22 + a27x27.

7. How many additions and multiplications are required to evaluate a degree n polynomial
with base points, using the general nested multiplication algorithm?

0.1 Computer Problems

1. Use the function nest to evaluate
Solutions for

Computer Problems
numbered in blue can
be found at
goo.gl/D6YLU2

P(x) = 1 + x + ·· · + x50 at x = 1.00001. (Use the
MATLAB ones command to save typing.) Find the error of the computation by
comparing with the equivalent expression Q(x) = (x51 − 1)/(x − 1).

2. Use nest.m to evaluate P(x) = 1 − x + x2 − x3 + ·· · + x98 − x99 at x = 1.00001. Find
a simpler, equivalent expression, and use it to estimate the error of the nested
multiplication.

0.2 BINARY NUMBERS

In preparation for the detailed study of computer arithmetic in the next section, we
need to understand the binary number system. Decimal numbers are converted from
base 10 to base 2 in order to store numbers on a computer and to simplify computer
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operations like addition and multiplication. To give output in decimal notation, the
process is reversed. In this section, we discuss ways to convert between decimal and
binary numbers.

Binary numbers are expressed as

. . .b2b1b0.b−1b−2 . . . ,

where each binary digit, or bit, is 0 or 1. The base 10 equivalent to the number is

. . .b222 + b121 + b020 + b−12−1 + b−22−2 . . . .

For example, the decimal number 4 is expressed as (100.)2 in base 2, and 3/4 is repre-
sented as (0.11)2.

0.2.1 Decimal to binary

The decimal number 53 will be represented as (53)10 to emphasize that it is to be
interpreted as base 10. To convert to binary, it is simplest to break the number
into integer and fractional parts and convert each part separately. For the number
(53.7)10 = (53)10 + (0.7)10, we will convert each part to binary and combine the
results.

Integer part. Convert decimal integers to binary by dividing by 2 successively and
recording the remainders. The remainders, 0 or 1, are recorded by starting at the dec-
imal point (or more accurately, radix) and moving away (to the left). For (53)10, we
would have

53 ÷ 2 = 26 R 1

26 ÷ 2 = 13 R 0

13 ÷ 2 = 6 R 1

6 ÷ 2 = 3 R 0

3 ÷ 2 = 1 R 1

1 ÷ 2 = 0 R 1.

Therefore, the base 10 number 53 can be written in bits as 110101, denoted as
(53)10 = (110101.)2. Checking the result, we have 110101 = 25 + 24 + 22 + 20 =
32 + 16 +4 + 1 = 53.

Fractional part. Convert (0.7)10 to binary by reversing the preceding steps. Multi-
ply by 2 successively and record the integer parts, moving away from the decimal point
to the right.

.7 × 2 = .4 + 1

.4 × 2 = .8 + 0

.8 × 2 = .6 + 1

.6 × 2 = .2 + 1

.2 × 2 = .4 + 0

.4 × 2 = .8 + 0
....
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Notice that the process repeats after four steps and will repeat indefinitely exactly the
same way. Therefore,

(0.7)10 = (.1011001100110 . . .)2 = (.10110)2,

where overbar notation is used to denote infinitely repeated bits. Putting the two parts
together, we conclude that

(53.7)10 = (110101.10110)2.

0.2.2 Binary to decimal

To convert a binary number to decimal, it is again best to separate into integer and
fractional parts.

Integer part. Simply add up powers of 2 as we did before. The binary number
(10101)2 is simply 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (21)10.

Fractional part. If the fractional part is finite (a terminating base 2 expansion),
proceed the same way. For example,

(.1011)2 = 1
2

+ 1
8

+ 1
16

=
(

11
16

)
10

.

The only complication arises when the fractional part is not a finite base 2 expansion.
Converting an infinitely repeating binary expansion to a decimal fraction can be done
in several ways. Perhaps the simplest way is to use the shift property of multiplication
by 2.

For example, suppose x = (0.1011)2 is to be converted to decimal. Multiply x by
24, which shifts 4 places to the left in binary. Then subtract the original x :

24x = 1011.1011

x = 0000.1011.

Subtracting yields

(24 − 1)x = (1011)2 = (11)10.

Then solve for x to find x = (.1011)2 = 11/15 in base 10.
As another example, assume that the fractional part does not immediately repeat,

as in x = .10101. Multiplying by 22 shifts to y = 22x = 10.101. The fractional part of
y, call it z = .101, is calculated as before:

23z = 101.101

z = 000.101.

Therefore, 7z = 5, and y = 2 + 5/7, x = 2−2 y = 19/28 in base 10. It is a good exercise
to check this result by converting 19/28 to binary and comparing to the original x .

Binary numbers are the building blocks of machine computations, but they turn
out to be long and unwieldy for humans to interpret. It is useful to use base 16
at times just to present numbers more easily. Hexadecimal numbers are represented
by the 16 numerals 0,1,2, . . . ,9, A, B,C, D, E, F . Each hex number can be repre-
sented by 4 bits. Thus (1)16 =(0001)2, (8)16 = (1000)2, and (F)16 =(1111)2 =(15)10.
In the next section, MATLAB’s format hex for representing machine numbers will
be described.



8 | CHAPTER 0 Fundamentals

� ADDITIONAL
EXAMPLES

*1. Convert the decimal number 98.6 to binary.

2. Convert the repeating binary number 0.1000111 to a base 10 fraction.

Solutions for Additional Examples can be found at goo.gl/jVKlKJ
(* example with video solution)

0.2 Exercises

1. Find the binary representation
Solutions

for Exercises
numbered in blue
can be found at
goo.gl/8y092J

of the base 10 integers. (a) 64 (b) 17 (c) 79 (d) 227

2. Find the binary representation of the base 10 numbers. (a) 1/8 (b) 7/8 (c) 35/16 (d) 31/64

3. Convert the following base 10 numbers to binary. Use overbar notation for
nonterminating binary numbers. (a) 10.5 (b) 1/3 (c) 5/7 (d) 12.8 (e) 55.4 (f ) 0.1

4. Convert the following base 10 numbers to binary. (a) 11.25 (b) 2/3 (c) 3/5 (d) 3.2 (e) 30.6
(f) 99.9

5. Find the first 15 bits in the binary representation of π .

6. Find the first 15 bits in the binary representation of e.

7. Convert the following binary numbers to base 10: (a) 1010101 (b) 1011.101 (c) 10111.01
(d) 110.10 (e) 10.110 (f) 110.1101 (g) 10.0101101 (h) 111.1

8. Convert the following binary numbers to base 10: (a) 11011 (b) 110111.001 (c) 111.001
(d) 1010.01 (e) 10111.10101 (f) 1111.010001

0.3 FLOATING POINT REPRESENTATION OF REAL NUMBERS

There are several models for computer arithmetic of floating point numbers. The mod-
els in modern use are based on the IEEE 754 Floating Point Standard. The Institute
of Electrical and Electronics Engineers (IEEE) takes an active interest in establish-
ing standards for the industry. Their floating point arithmetic format has become the
common standard for single precision and double precision arithmetic throughout the
computer industry.

Rounding errors are inevitable when finite-precision computer memory locations
are used to represent real, infinite precision numbers. Although we would hope that
small errors made during a long calculation have only a minor effect on the answer,
this turns out to be wishful thinking in many cases. Simple algorithms, such as Gaussian
elimination or methods for solving differential equations, can magnify microscopic errors
to macroscopic size. In fact, a main theme of this book is to help the reader to recognize
when a calculation is at risk of being unreliable due to magnification of the small errors
made by digital computers and to know how to avoid or minimize the risk.

0.3.1 Floating point formats

The IEEE standard consists of a set of binary representations of real numbers. A
floating point number consists of three parts: the sign (+ or −), a mantissa, which
contains the string of significant bits, and an exponent. The three parts are stored
together in a single computer word.

There are three commonly used levels of precision for floating point numbers:
single precision, double precision, and extended precision, also known as long-double
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precision. The number of bits allocated for each floating point number in the three
formats is 32,64, and 80, respectively. The bits are divided among the parts as follows:

precision sign exponent mantissa

single 1 8 23
double 1 11 52
long double 1 15 64

All three types of precision work essentially the same way. The form of a normal-
ized IEEE floating point number is

±1.bbb . . .b × 2p, (0.6)

where each of the N b’s is 0 or 1, and p is an M-bit binary number representing the
exponent. Normalization means that, as shown in (0.6), the leading (leftmost) bit must
be 1.

When a binary number is stored as a normalized floating point number, it is “left-
justified,” meaning that the leftmost 1 is shifted just to the left of the radix point. The
shift is compensated by a change in the exponent. For example, the decimal number 9,
which is 1001 in binary, would be stored as

+1.001 × 23,

because a shift of 3 bits, or multiplication by 23, is necessary to move the leftmost one
to the correct position.

For concreteness, we will specialize to the double precision format for most of the
discussion. The double precision format, common in C compilers, python, and MAT-
LAB, uses exponent length M = 11 and mantissa length N = 52. Single and long dou-
ble precision are handled in the same way, but with different choices for M and N as
specified above.

The double precision number 1 is

+1. 0000000000000000000000000000000000000000000000000000 × 20,

where we have boxed the 52 bits of the mantissa. The next floating point number
greater than 1 is

+1. 0000000000000000000000000000000000000000000000000001 × 20,

or 1 + 2−52.

DEFINITION 0.1 The number machine epsilon, denoted εmach, is the distance between 1 and the smallest
floating point number greater than 1. For the IEEE double precision floating point
standard,

εmach = 2−52. ❒

The decimal number 9.4 = (1001.0110)2 is left-justified as

+1. 0010110011001100110011001100110011001100110011001100 110 . . . × 23,

where we have boxed the first 52 bits of the mantissa. A new question arises: How do
we fit the infinite binary number representing 9.4 in a finite number of bits?

We must truncate the number in some way, and in so doing we necessarily make
a small error. One method, called chopping, is to simply throw away the bits that fall




