

Numerical Analysis
T H I R D E D I T I O N

Timothy Sauer
George Mason University

Director, Portfolio Management: Deirdre Lynch
Executive Editor: Jeff Weidenaar
Editorial Assistant: Jennifer Snyder
Content Producer: Tara Corpuz
Managing Producer: Scott Disanno
Producer: Jean Choe
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Evan St. Cyr
Marketing Assistant: Jon Bryant
Senior Author Support/Technology Specialist: Joe Vetere
Manager, Rights and Permissions: Gina Cheselka
Manufacturing Buyer: Carol Melville, LSC Communications
Cover Image: Gyn9037/ Shutterstock
Text and Cover Design, Illustrations, Production Coordination, Composition:

Integra Software Services Pvt. Ltd

Copyright c© 2018, 2012, 2006 by Pearson Education, Inc. All Rights Reserved. Printed in the United States
of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Photo Credits: Page 1 Zsolt Biczo/ Shutterstock; Page 26 Polonio Video/ Shutterstock; Page 41 DEA PICTURE LIBRARY /
Getty Images; Page 74 Redswept /Shutterstock; Page 144 Rosenfeld Images, Ltd./Photo Researchers, Inc.; Page 196
dolgachov/ 123RF; Page 253 wklzzz / 123RF; Page 293 UPPA/Photoshot; Page 366 Paul Springett 04/Alamy Stock Photo;
Page 394 iStock/Getty Images Plus; Page 453 xPACIFICA / Alamy; Page 489 Picture Alliance/Photoshot; Page 518 Chris
Rout/Alamy Stock Photo; Pages 528 & 534 Toni Angermayer/Photo Researchers, Inc.; Page 556 Jinx Photography
Brands/Alamy Stock Photo; Page 593 Astronoman /Shutterstock.

Text Credits: Page 50 J. H. Wilkinson, The perfidious polynomial, In ed. by Gene H. Golub. Studies in Numerical Analysis.
Mathematical Association of America, 24 (1984); Page 153 & Page 188 “Author-created using the software from MATLAB.
The MathWorks, Inc., Natick, Massachusetts, USA, http://www.mathworks.com.”; Page 454 Von Neumann, John (1951).
“Various techniques used in connection with random digits.” In A. S. Householder, G. E. Forsythe, and H. H. Germond,
eds., Proceedings of Symposium on “Monte Carlo Method” held June-July 1949 in Los Angeles. Journal of Research of the
National Bureau of Standards, Applied Mathematics Series, no. 12, pp 36–38 (Washington, D.C.: USGPO, 1951) Summary
written by George E. Forsythe. Reprinted in von Neumann, John von Neumann Collected Works, ed. A. H. Taub, vol. 5
(New York: Macmillan, 1963) Vol. V, pp 768–770; Page 622 Author-created using the software from MATLAB. The
MathWorks, Inc., Natick, Massachusetts, USA, http://www.mathworks.com.; Page 623 Author-created using the software
from MATLAB. The MathWorks, Inc., Natick, Massachusetts, USA, http://www.mathworks.com.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its
affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or
promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson
Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Sauer, Tim, author.
Title: Numerical analysis / Timothy Sauer, George Mason University.
Description: Third edition. | Hoboken : Pearson, [2019] | Includes

bibliographical references and index.
Identifiers: LCCN 2017028491| ISBN 9780134696454 (alk. paper) |

ISBN 013469645X (alk. paper)
Subjects: LCSH: Numerical analysis. | Mathematical analysis.
Classification: LCC QA297 .S348 2019 | DDC 518–dc23
LC record available at https://lccn.loc.gov/2017028491

1 17

ISBN 10: 0-13-469645-X
ISBN 13: 978-0-13-469645-4

www.pearsoned.com/permissions/
http://www.mathworks.com.�; Page
http://www.mathworks.com.; Page
http://www.mathworks.com
https://lccn.loc.gov/2017028491

Contents

PREFACE xi

CHAPTER 0 Fundamentals 1
0.1 Evaluating a Polynomial 1
0.2 Binary Numbers 5

0.2.1 Decimal to binary 6
0.2.2 Binary to decimal 7

0.3 Floating Point Representation of Real Numbers 8
0.3.1 Floating point formats 8
0.3.2 Machine representation 12
0.3.3 Addition of floating point numbers 14

0.4 Loss of Significance 17
0.5 Review of Calculus 21

Software and Further Reading 24

CHAPTER 1 Solving Equations 26
1.1 The Bisection Method 27

1.1.1 Bracketing a root 27
1.1.2 How accurate and how fast? 30

1.2 Fixed-Point Iteration 33
1.2.1 Fixed points of a function 33
1.2.2 Geometry of Fixed-Point Iteration 36
1.2.3 Linear convergence of Fixed-Point Iteration 36
1.2.4 Stopping criteria 42

1.3 Limits of Accuracy 46
1.3.1 Forward and backward error 46
1.3.2 The Wilkinson polynomial 49
1.3.3 Sensitivity of root-finding 50

1.4 Newton’s Method 54
1.4.1 Quadratic convergence of Newton’s Method 56
1.4.2 Linear convergence of Newton’s Method 58

1.5 Root-Finding without Derivatives 64
1.5.1 Secant Method and variants 64
1.5.2 Brent’s Method 68

Reality Check 1: Kinematics of the Stewart platform 70
Software and Further Reading 73

iv | Contents

CHAPTER 2 Systems of Equations 74
2.1 Gaussian Elimination 74

2.1.1 Naive Gaussian elimination 75
2.1.2 Operation counts 77

2.2 The LU Factorization 82
2.2.1 Matrix form of Gaussian elimination 82
2.2.2 Back substitution with the LU factorization 85
2.2.3 Complexity of the LU factorization 86

2.3 Sources of Error 89
2.3.1 Error magnification and condition number 89
2.3.2 Swamping 95

2.4 The PA = LU Factorization 99
2.4.1 Partial pivoting 99
2.4.2 Permutation matrices 101
2.4.3 PA = LU factorization 102

Reality Check 2: The Euler–Bernoulli Beam 107
2.5 Iterative Methods 110

2.5.1 Jacobi Method 111
2.5.2 Gauss–Seidel Method and SOR 113
2.5.3 Convergence of iterative methods 116
2.5.4 Sparse matrix computations 117

2.6 Methods for symmetric positive-definite matrices 122
2.6.1 Symmetric positive-definite matrices 122
2.6.2 Cholesky factorization 124
2.6.3 Conjugate Gradient Method 127
2.6.4 Preconditioning 132

2.7 Nonlinear Systems of Equations 136
2.7.1 Multivariate Newton’s Method 136
2.7.2 Broyden’s Method 139
Software and Further Reading 143

CHAPTER 3 Interpolation 144
3.1 Data and Interpolating Functions 145

3.1.1 Lagrange interpolation 146
3.1.2 Newton’s divided differences 147
3.1.3 How many degree d polynomials pass through n

points? 150
3.1.4 Code for interpolation 151
3.1.5 Representing functions by approximating polynomials 153

3.2 Interpolation Error 157
3.2.1 Interpolation error formula 158
3.2.2 Proof of Newton form and error formula 159
3.2.3 Runge phenomenon 162

3.3 Chebyshev Interpolation 164
3.3.1 Chebyshev’s theorem 165
3.3.2 Chebyshev polynomials 167
3.3.3 Change of interval 169

Contents | v

3.4 Cubic Splines 173
3.4.1 Properties of splines 174
3.4.2 Endpoint conditions 180

3.5 Bézier Curves 185
Reality Check 3: Fonts from Bézier curves 190

Software and Further Reading 194

CHAPTER 4 Least Squares 196
4.1 Least Squares and the Normal Equations 196

4.1.1 Inconsistent systems of equations 197
4.1.2 Fitting models to data 201
4.1.3 Conditioning of least squares 205

4.2 A Survey of Models 208
4.2.1 Periodic data 208
4.2.2 Data linearization 211

4.3 QR Factorization 220
4.3.1 Gram–Schmidt orthogonalization and least squares 220
4.3.2 Modified Gram–Schmidt orthogonalization 227
4.3.3 Householder reflectors 228

4.4 Generalized Minimum Residual (GMRES) Method 235
4.4.1 Krylov methods 235
4.4.2 Preconditioned GMRES 237

4.5 Nonlinear Least Squares 240
4.5.1 Gauss–Newton Method 240
4.5.2 Models with nonlinear parameters 243
4.5.3 The Levenberg–Marquardt Method 245

Reality Check 4: GPS, Conditioning, and Nonlinear Least Squares 248
Software and Further Reading 251

CHAPTER 5 Numerical Differentiation and
Integration 253

5.1 Numerical Differentiation 254
5.1.1 Finite difference formulas 254
5.1.2 Rounding error 257
5.1.3 Extrapolation 259
5.1.4 Symbolic differentiation and integration 261

5.2 Newton–Cotes Formulas for Numerical Integration 264
5.2.1 Trapezoid Rule 265
5.2.2 Simpson’s Rule 267
5.2.3 Composite Newton–Cotes formulas 269
5.2.4 Open Newton–Cotes Methods 272

5.3 Romberg Integration 276
5.4 Adaptive Quadrature 279
5.5 Gaussian Quadrature 284
Reality Check 5:Motion Control in Computer-Aided Modeling 289

Software and Further Reading 291

vi | Contents

CHAPTER 6 Ordinary Differential Equations 293
6.1 Initial Value Problems 294

6.1.1 Euler’s Method 295
6.1.2 Existence, uniqueness, and continuity for

solutions 300
6.1.3 First-order linear equations 303

6.2 Analysis of IVP Solvers 306
6.2.1 Local and global truncation error 306
6.2.2 The explicit Trapezoid Method 310
6.2.3 Taylor Methods 313

6.3 Systems of Ordinary Differential Equations 316
6.3.1 Higher order equations 317
6.3.2 Computer simulation: the pendulum 318
6.3.3 Computer simulation: orbital mechanics 322

6.4 Runge–Kutta Methods and Applications 328
6.4.1 The Runge–Kutta family 328
6.4.2 Computer simulation: the Hodgkin–Huxley

neuron 331
6.4.3 Computer simulation: the Lorenz equations 333

Reality Check 6: The Tacoma Narrows Bridge 337
6.5 Variable Step-Size Methods 340

6.5.1 Embedded Runge–Kutta pairs 340
6.5.2 Order 4/5 methods 342

6.6 Implicit Methods and Stiff Equations 347
6.7 Multistep Methods 351

6.7.1 Generating multistep methods 352
6.7.2 Explicit multistep methods 354
6.7.3 Implicit multistep methods 359
Software and Further Reading 365

CHAPTER 7 Boundary Value Problems 366
7.1 Shooting Method 367

7.1.1 Solutions of boundary value problems 367
7.1.2 Shooting Method implementation 370

Reality Check 7: Buckling of a Circular Ring 374
7.2 Finite Difference Methods 376

7.2.1 Linear boundary value problems 376
7.2.2 Nonlinear boundary value problems 378

7.3 Collocation and the Finite Element Method 384
7.3.1 Collocation 384
7.3.2 Finite Elements and the Galerkin Method 387

Software and Further Reading 392

Contents | vii

CHAPTER 8 Partial Differential Equations 394
8.1 Parabolic Equations 395

8.1.1 Forward Difference Method 395
8.1.2 Stability analysis of Forward Difference Method 399
8.1.3 Backward Difference Method 400
8.1.4 Crank–Nicolson Method 405

8.2 Hyperbolic Equations 413
8.2.1 The wave equation 413
8.2.2 The CFL condition 415

8.3 Elliptic Equations 419
8.3.1 Finite Difference Method for elliptic equations 420

Reality Check 8: Heat Distribution on a Cooling Fin 424
8.3.2 Finite Element Method for elliptic equations 427

8.4 Nonlinear Partial Differential Equations 438
8.4.1 Implicit Newton solver 438
8.4.2 Nonlinear equations in two space dimensions 444
Software and Further Reading 451

CHAPTER 9 RandomNumbers and Applications 453
9.1 Random Numbers 454

9.1.1 Pseudo-random numbers 454
9.1.2 Exponential and normal random numbers 459

9.2 Monte Carlo Simulation 462
9.2.1 Power laws for Monte Carlo estimation 462
9.2.2 Quasi-random numbers 464

9.3 Discrete and Continuous Brownian Motion 469
9.3.1 Random walks 469
9.3.2 Continuous Brownian motion 472

9.4 Stochastic Differential Equations 474
9.4.1 Adding noise to differential equations 475
9.4.2 Numerical methods for SDEs 478

Reality Check 9: The Black–Scholes Formula 486
Software and Further Reading 488

CHAPTER 10 Trigonometric Interpolation and
the FFT 489

10.1 The Fourier Transform 490
10.1.1 Complex arithmetic 490
10.1.2 Discrete Fourier Transform 493
10.1.3 The Fast Fourier Transform 495

10.2 Trigonometric Interpolation 498
10.2.1 The DFT Interpolation Theorem 498
10.2.2 Efficient evaluation of trigonometric functions 502

10.3 The FFT and Signal Processing 505
10.3.1 Orthogonality and interpolation 506
10.3.2 Least squares fitting with trigonometric functions 508
10.3.3 Sound, noise, and filtering 512

Reality Check 10: The Wiener Filter 515
Software and Further Reading 517

viii | Contents

CHAPTER 11 Compression 518
11.1 The Discrete Cosine Transform 519

11.1.1 One-dimensional DCT 519
11.1.2 The DCT and least squares approximation 521

11.2 Two-Dimensional DCT and Image Compression 524
11.2.1 Two-dimensional DCT 524
11.2.2 Image compression 528
11.2.3 Quantization 531

11.3 Huffman Coding 538
11.3.1 Information theory and coding 538
11.3.2 Huffman coding for the JPEG format 541

11.4 Modified DCT and Audio Compression 544
11.4.1 Modified Discrete Cosine Transform 544
11.4.2 Bit quantization 550

Reality Check 11: A Simple Audio Codec 552
Software and Further Reading 555

CHAPTER 12 Eigenvalues and Singular Values 556
12.1 Power Iteration Methods 556

12.1.1 Power Iteration 557
12.1.2 Convergence of Power Iteration 559
12.1.3 Inverse Power Iteration 560
12.1.4 Rayleigh Quotient Iteration 562

12.2 QR Algorithm 564
12.2.1 Simultaneous iteration 565
12.2.2 Real Schur form and the QR algorithm 567
12.2.3 Upper Hessenberg form 570

Reality Check 12: How Search Engines Rate Page Quality 575
12.3 Singular Value Decomposition 578

12.3.1 Geometry of the SVD 578
12.3.2 Finding the SVD in general 581

12.4 Applications of the SVD 585
12.4.1 Properties of the SVD 585
12.4.2 Dimension reduction 587
12.4.3 Compression 588
12.4.4 Calculating the SVD 590
Software and Further Reading 592

Contents | ix

CHAPTER 13 Optimization 593
13.1 Unconstrained Optimization without Derivatives 594

13.1.1 Golden Section Search 594
13.1.2 Successive Parabolic Interpolation 597
13.1.3 Nelder–Mead search 600

13.2 Unconstrained Optimization with Derivatives 604
13.2.1 Newton’s Method 604
13.2.2 Steepest Descent 605
13.2.3 Conjugate Gradient Search 606

Reality Check 13:Molecular Conformation and Numerical
Optimization 609
Software and Further Reading 610

Appendix A: Matrix Algebra 612
A.1 Matrix Fundamentals 612
A.2 Systems of linear equations 614
A.3 Block Multiplication 615
A.4 Eigenvalues and Eigenvectors 616
A.5 Symmetric Matrices 617
A.6 Vector Calculus 618

Appendix B: Introduction toMatlab 620
B.1 Starting MATLAB 620
B.2 Graphics 621
B.3 Programming in MATLAB 623
B.4 Flow Control 624
B.5 Functions 625
B.6 Matrix Operations 627
B.7 Animation and Movies 628

ANSWERS TO SELECTED EXERCISES 630

BIBLIOGRAPHY 646

INDEX 652

This page intentionally left blank

Preface

Numerical Analysis is a text for students of engineering, science, mathematics, and
computer science who have completed elementary calculus and matrix algebra.

The primary goal is to construct and explore algorithms for solving science and engi-
neering problems. The not-so-secret secondary mission is to help the reader locate
these algorithms in a landscape of some potent and far-reaching principles. These
unifying principles, taken together, constitute a dynamic field of current research and
development in modern numerical and computational science.

The discipline of numerical analysis is jam-packed with useful ideas. Textbooks
run the risk of presenting the subject as a bag of neat but unrelated tricks. For a deep
understanding, readers need to learn much more than how to code Newton’s Method,
Runge–Kutta, and the Fast Fourier Transform. They must absorb the big principles,
the ones that permeate numerical analysis and integrate its competing concerns of
accuracy and efficiency.

The notions of convergence, complexity, conditioning, compression, and orthogo-
nality are among the most important of the big ideas. Any approximation method
worth its salt must converge to the correct answer as more computational resources
are devoted to it, and the complexity of a method is a measure of its use of these
resources. The conditioning of a problem, or susceptibility to error magnification, is
fundamental to knowing how it can be attacked. Many of the newest applications
of numerical analysis strive to realize data in a shorter or compressed way. Finally,
orthogonality is crucial for efficiency in many algorithms, and is irreplaceable where
conditioning is an issue or compression is a goal.

In this book, the roles of these five concepts in modern numerical analysis are
emphasized in short thematic elements labeled Spotlight. They comment on the topic
at hand and make informal connections to other expressions of the same concept else-
where in the book. We hope that highlighting the five concepts in such an explicit way
functions as a Greek chorus, accentuating what is really crucial about the theory on
the page.

Although it is common knowledge that the ideas of numerical analysis are vital to
the practice of modern science and engineering, it never hurts to be obvious. The fea-
ture entitled Reality Check provide concrete examples of the way numerical methods
lead to solutions of important scientific and technological problems. These extended
applications were chosen to be timely and close to everyday experience. Although it
is impossible (and probably undesirable) to present the full details of the problems,
the Reality Checks attempt to go deeply enough to show how a technique or algo-
rithm can leverage a small amount of mathematics into a great payoff in technological
design and function. The Reality Checks were popular as a source of student projects
in previous editions, and they have been extended and amplified in this edition.

NEW TO THIS EDITION

Features of the third edition include:

• Short URLs in the side margin of the text (235 of them in all) take students directly
to relevant content that supports their use of the textbook. Specifically:

◦ MATLAB Code: Longer instances of MATLAB code are available for students
in *.m format. The homepage for all of the instances of MATLAB code is
goo.gl/VxzXyw.

xii | Preface

◦ Solutions to Selected Exercises: This text used to be supported by a Student Solu-
tions Manual that was available for purchase separately. In this edition we are
providing students with access solutions to selected exercises online at no extra
charge. The homepage for the selected solutions is goo.gl/2j5gI7.

◦ Additional Examples: Each section of the third edition is enhanced with extra new
examples, designed to reinforce the text exposition and to ease the reader’s tran-
sition to active solution of exercises and computer problems. The full worked-out
details of these examples, more than one hundred in total, are available online.
Some of the solutions are in video format (created by the author). The homepage
for the solutions to Additional Examples is goo.gl/lFQb0B.

◦ NOTE: The homepage for all web content supporting the text is
goo.gl/zQNJeP.

• More detailed discussion of several key concepts has been added in this edi-
tion, including theory of polynomial interpolation, multi-step differential equation
solvers, boundary value problems, and the singular value decomposition, among
others.

• The Reality Check on audio compression in Chapter 11 has been refurbished and
simplified, and other MATLAB codes have been added and updated throughout
the text.

• Several dozen new exercises and computer problems have been added to the third
edition.

TECHNOLOGY

The software package MATLAB is used both for exposition of algorithms and as
a suggested platform for student assignments and projects. The amount of MATLAB
code provided in the text is carefully modulated, due to the fact that too much tends to
be counterproductive. More MATLAB code is found in the early chapters, allowing
the reader to gain proficiency in a gradual manner. Where more elaborate code is
provided (in the study of interpolation, and ordinary and partial differential equations,
for example), the expectation is for the reader to use what is given as a jumping-off
point to exploit and extend.

It is not essential that any particular computational platform be used with
this textbook, but the growing presence of MATLAB in engineering and science
departments shows that a common language can smooth over many potholes. With
MATLAB, all of the interface problems—data input/output, plotting, and so on—are
solved in one fell swoop. Data structure issues (for example those that arise when
studying sparse matrix methods) are standardized by relying on appropriate com-
mands. MATLAB has facilities for audio and image file input and output. Differential
equations simulations are simple to realize due to the animation commands built into
MATLAB. These goals can all be achieved in other ways. But it is helpful to have
one package that will run on almost all operating systems and simplify the details so
that students can focus on the real mathematical issues. Appendix B is a MATLAB
tutorial that can be used as a first introduction to students, or as a reference for those
already familiar.

SUPPLEMENTS

The Instructor’s Solutions Manual contains detailed solutions to the odd-numbered
exercises, and answers to the even-numbered exercises. The manual also shows how to

Preface | xiii

use MATLAB software as an aid to solving the types of problems that are presented
in the Exercises and Computer Problems.

DESIGNING THE COURSE

Numerical Analysis is structured to move from foundational, elementary ideas at the
outset to more sophisticated concepts later in the presentation. Chapter 0 provides
fundamental building blocks for later use. Some instructors like to start at the begin-
ning; others (including the author) prefer to start at Chapter 1 and fold in topics from
Chapter 0 when required. Chapters 1 and 2 cover equation-solving in its various forms.
Chapters 3 and 4 primarily treat the fitting of data, interpolation and least squares
methods. In chapters 5–8, we return to the classical numerical analysis areas of con-
tinuous mathematics: numerical differentiation and integration, and the solution of
ordinary and partial differential equations with initial and boundary conditions.

Chapter 9 develops random numbers in order to provide complementary methods
to Chapters 5–8: the Monte-Carlo alternative to the standard numerical integration
schemes and the counterpoint of stochastic differential equations are necessary when
uncertainty is present in the model.

Compression is a core topic of numerical analysis, even though it often hides in
plain sight in interpolation, least squares, and Fourier analysis. Modern compression
techniques are featured in Chapters 10 and 11. In the former, the Fast Fourier Trans-
form is treated as a device to carry out trigonometric interpolation, both in the exact
and least squares sense. Links to audio compression are emphasized, and fully car-
ried out in Chapter 11 on the Discrete Cosine Transform, the standard workhorse for
modern audio and image compression. Chapter 12 on eigenvalues and singular values
is also written to emphasize its connections to data compression, which are growing in
importance in contemporary applications. Chapter 13 provides a short introduction
to optimization techniques.

Numerical Analysis can also be used for a one-semester course with judicious
choice of topics. Chapters 0–3 are fundamental for any course in the area. Separate
one-semester tracks can be designed as follows:

Chapters
4, 6, 8, 9, 13

Chapters
4, 10, 11, 12

Chapters
5, 6, 7, 8

Chapters
0 3

traditional calculus/
differential equations

concentration

discrete mathematics
emphasis on orthogonality

and compression

financial engineering
concentration

ACKNOWLEDGMENTS

The third edition owes a debt to many people, including the students of many classes
who have read and commented on earlier versions. In addition, Paul Lorczak was

xiv | Preface

essential in helping me avoid embarrassing blunders. The resourceful staff at Pearson,
including Jeff Weidenaar, Jenn Snyder, Yvonne Vannatta, and Tara Corpuz, made the
production of the third edition almost enjoyable. Finally, thanks are due to the helpful
readers from other universities for their encouragement of this project and indispens-
able advice for improvement of earlier versions:

• Eugene Allgower, Colorado State University
• Constantin Bacuta, University of Delaware
• Michele Benzi, Emory University
• Jerry Bona, University of Illinois at Chicago
• George Davis, Georgia State University
• Chris Danforth, University of Vermont
• Alberto Delgado, Illinois State University
• Robert Dillon. Washington State University
• Qiang Du, Columbia University
• Ahmet Duran, University of Michigan
• Gregory Goeckel, Presbyterian College
• Herman Gollwitzer, Drexel University
• Weimin Han, University of Iowa *
• Don Hardcastle, Baylor University
• David R. Hill, Temple University
• Alberto Jimenez, California Polytechnic State University *
• Hideaki Kaneko, Old Dominion University
• Ashwani Kapila, Rensselaer Polytechnic Institute *
• Daniel Kaplan, Macalester College
• Fritz Keinert, Iowa State University
• Akhtar A. Khan, Rochester Institute of Technology
• Lucia M. Kimball, Bentley College
• Colleen M. Kirk, California Polytechnic State University
• Seppo Korpela, Ohio State University
• William Layton, University of Pittsburgh
• Brenton LeMesurier, College of Charleston
• Melvin Leok, University of California, San Diego
• Doron Levy, University of Maryland
• Bo Li, University of California, San Diego *
• Jianguo Liu, University of North Texas *
• Mark Lyon, University of New Hampshire *
• Shankar Mahalingam, University of Alabama, Huntsville
• Amnon Meir, Southern Methodist University
• Peter Monk, University of Delaware
• Joseph E. Pasciak, Texas A&M University
• Jeff Parker, Harvard University
• Jacek Polewczak, California State University
• Jorge Rebaza, Missouri State University
• Jeffrey Scroggs, North Carolina State University
• David Stewart, University of Iowa *
• David Stowell, Brigham Young University *
• Sergei Suslov, Arizona State University
• Daniel Szyld, Temple University
• Ahlam Tannouri, Morgan State University

Preface | xv

• Janos Turi, University of Texas, Dallas *
• Jin Wang, Old Dominion University
• Bruno Welfert, Arizona State University
• Nathaniel Whitaker, University of Massachusetts

* Contributed to the current edition

This page intentionally left blank

C H A P T E R

0
Fundamentals
This introductory chapter provides basic building
blocks necessary for the construction and understand-
ing of the algorithms of the book. They include fun-
damental ideas of introductory calculus and function
evaluation, the details of machine arithmetic as it is car-
ried out on modern computers, and discussion of the
loss of significant digits resulting from poorly designed
calculations.

After discussing efficient methods for evaluating
polynomials, we study the binary number system, the
representation of floating point numbers, and the com-
mon protocols used for rounding. The effects of the
small rounding errors on computations are magnified
in ill-conditioned problems. The battle to limit these
pernicious effects is a recurring theme throughout the
rest of the chapters.

The goal of this book is to present and discuss methods of solving mathematical
problems with computers. The most fundamental operations of arithmetic are

addition and multiplication. These are also the operations needed to evaluate a poly-
nomial P(x) at a particular value x . It is no coincidence that polynomials are the basic
building blocks for many computational techniques we will construct.

Because of this, it is important to know how to evaluate a polynomial. The reader
probably already knows how and may consider spending time on such an easy problem
slightly ridiculous! But the more basic an operation is, the more we stand to gain by
doing it right. Therefore we will think about how to implement polynomial evaluation
as efficiently as possible.

0.1 EVALUATING A POLYNOMIAL

What is the best way to evaluate

P(x) = 2x4 + 3x3 − 3x2 + 5x − 1,

say, at x = 1/2? Assume that the coefficients of the polynomial and the number 1/2 are
stored in memory, and try to minimize the number of additions and multiplications

2 | CHAPTER 0 Fundamentals

required to get P(1/2). To simplify matters, we will not count time spent storing and
fetching numbers to and from memory.

METHOD 1 The first and most straightforward approach is

P

(
1
2

)
= 2 ∗ 1

2
∗ 1

2
∗ 1

2
∗ 1

2
+ 3 ∗ 1

2
∗ 1

2
∗ 1

2
− 3 ∗ 1

2
∗ 1

2
+ 5 ∗ 1

2
− 1 = 5

4
. (0.1)

The number of multiplications required is 10, together with 4 additions. Two of the
additions are actually subtractions, but because subtraction can be viewed as adding
a negative stored number, we will not worry about the difference.

There surely is a better way than (0.1). Effort is being duplicated—operations
can be saved by eliminating the repeated multiplication by the input 1/2. A better
strategy is to first compute (1/2)4, storing partial products as we go. That leads to the
following method:

METHOD 2 Find the powers of the input number x =1/2 first, and store them for future use:

1
2

∗ 1
2

=
(

1
2

)2

(
1
2

)2

∗ 1
2

=
(

1
2

)3

(
1
2

)3

∗ 1
2

=
(

1
2

)4

.

Now we can add up the terms:

P

(
1
2

)
= 2 ∗

(
1
2

)4

+ 3 ∗
(

1
2

)3

− 3 ∗
(

1
2

)2

+ 5 ∗ 1
2

− 1 = 5
4
.

There are now 3 multiplications of 1/2, along with 4 other multiplications. Counting
up, we have reduced to 7 multiplications, with the same 4 additions. Is the reduction
from 14 to 11 operations a significant improvement? If there is only one evaluation
to be done, then probably not. Whether Method 1 or Method 2 is used, the answer
will be available before you can lift your fingers from the computer keyboard. How-
ever, suppose the polynomial needs to be evaluated at different inputs x several times
per second. Then the difference may be crucial to getting the information when it is
needed.

Is this the best we can do for a degree 4 polynomial? It may be hard to imagine
that we can eliminate three more operations, but we can. The best elementary method
is the following one:

METHOD 3 (Nested Multiplication) Rewrite the polynomial so that it can be evaluated from the
inside out:

P(x) = −1 + x(5 − 3x + 3x2 + 2x3)

= −1 + x(5 + x(−3 + 3x + 2x2))

= −1 + x(5 + x(−3 + x(3 + 2x)))

= −1 + x ∗ (5 + x ∗ (−3 + x ∗ (3 + x ∗ 2))). (0.2)

Here the polynomial is written backwards, and powers of x are factored out of the rest
of the polynomial. Once you can see to write it this way—no computation is required
to do the rewriting—the coefficients are unchanged. Now evaluate from the inside out:

0.1 Evaluating a Polynomial | 3

multiply
1
2

∗ 2, add + 3 → 4

multiply
1
2

∗ 4, add − 3 → −1

multiply
1
2

∗ −1, add + 5 → 9
2

multiply
1
2

∗ 9
2
, add − 1 → 5

4
. (0.3)

This method, called nested multiplication or Horner’s method, evaluates the polyno-
mial in 4 multiplications and 4 additions. A general degree d polynomial can be eval-
uated in d multiplications and d additions. Nested multiplication is closely related to
synthetic division of polynomial arithmetic.

The example of polynomial evaluation is characteristic of the entire topic of com-
putational methods for scientific computing. First, computers are very fast at doing
very simple things. Second, it is important to do even simple tasks as efficiently as
possible, since they may be executed many times. Third, the best way may not be the
obvious way. Over the last half-century, the fields of numerical analysis and scientific
computing, hand in hand with computer hardware technology, have developed effi-
cient solution techniques to attack common problems.

While the standard form for a polynomial c1 + c2x + c3x2 + c4x3 + c5x4 can be
written in nested form as

c1 + x(c2 + x(c3 + x(c4 + x(c5)))), (0.4)

some applications require a more general form. In particular, interpolation calcula-
tions in Chapter 3 will require the form

c1 + (x − r1)(c2 + (x − r2)(c3 + (x − r3)(c4 + (x − r4)(c5)))), (0.5)

where we call r1,r2,r3, and r4 the base points. Note that setting r1 = r2 = r3 = r4 = 0
in (0.5) recovers the original nested form (0.4).

The

MATLAB code
shown here can be found
at goo.gl/XjtZ1F

following MATLAB code implements the general form of nested multiplica-
tion (compare with (0.3)):

%Program 0.1 Nested multiplication
%Evaluates polynomial from nested form using Horner’s Method
%Input: degree d of polynomial,
% array of d+1 coefficients c (constant term first),
% x-coordinate x at which to evaluate, and
% array of d base points b, if needed
%Output: value y of polynomial at x
function y=nest(d,c,x,b)
if nargin<4, b=zeros(d,1); end
y=c(d+1);
for i=d:-1:1
y = y.*(x-b(i))+c(i);

end

Running this MATLAB function is a matter of substituting the input data, which
consist of the degree, coefficients, evaluation points, and base points. For example,
polynomial (0.2) can be evaluated at x = 1/2 by the MATLAB command

4 | CHAPTER 0 Fundamentals

>> nest(4,[-1 5 -3 3 2],1/2,[0 0 0 0])

ans =

1.2500

as we found earlier by hand. The file nest.m, as the rest of the MATLAB code shown
in this book, must be accessible from the MATLAB path (or in the current directory)
when executing the command.

If the nest command is to be used with all base points 0 as in (0.2), the abbrevi-
ated form

>> nest(4,[-1 5 -3 3 2],1/2)

may be used with the same result. This is due to the nargin statement in nest.m. If
the number of input arguments is less than 4, the base points are automatically set to
zero.

Because of MATLAB’s seamless treatment of vector notation, the nest command
can evaluate an array of x values at once. The following code is illustrative:

>> nest(4,[-1 5 -3 3 2],[-2 -1 0 1 2])

ans =

-15 -10 -1 6 53

Finally, the degree 3 interpolating polynomial

P(x) = 1 + x

(
1
2

+ (x − 2)

(
1
2

+ (x − 3)

(
−1

2

)))

from Chapter 3 has base points r1 = 0,r2 = 2,r3 = 3. It can be evaluated at x = 1 by

>> nest(3,[1 1/2 1/2 -1/2],1,[0 2 3])

ans =

0

� EXAMPLE 0.1 Find an efficient method for evaluating the polynomial P(x) = 4x5 + 7x8 − 3x11 +
2x14.

Some rewriting of the polynomial may help reduce the computational effort
required for evaluation. The idea is to factor x5 from each term and write as a poly-
nomial in the quantity x3:

P(x) = x5(4 + 7x3 − 3x6 + 2x9)

= x5 ∗ (4 + x3 ∗ (7 + x3 ∗ (−3 + x3 ∗ (2)))).

For each input x , we need to calculate x ∗ x = x2, x ∗ x2 = x3, and x2 ∗ x3 = x5 first.
These three multiplications, combined with the multiplication of x5, and the three
multiplications and three additions from the degree 3 polynomial in the quantity x3

give the total operation count of 7 multiplies and 3 adds per evaluation. �

0.2 Binary Numbers | 5

� ADDITIONAL
EXAMPLES

1. Use nested multiplication to evaluate the polynomial
P(x) = x6 − 2x5 + 3x4 − 4x3 + 5x2 − 6x + 7 at x = 2.

2. Rewrite the polynomial P(x) = 3x18 − 5x15 + 4x12 + 2x6 − x3 + 4 in nested form.
How many additions and how many multiplications are required for each input x?

Solutions for Additional Examples can be found at goo.gl/BE9ytE

0.1 Exercises

1. Rewrite
Solutions

for Exercises
numbered in blue
can be found at
goo.gl/qeVIvL

the following polynomials in nested form. Evaluate with and without nested form
at x = 1/3.

(a) P(x) = 6x4 + x3 + 5x2 + x + 1
(b) P(x) = −3x4 + 4x3 + 5x2 − 5x + 1
(c) P(x) = 2x4 + x3 − x2 + 1

2. Rewrite the following polynomials in nested form and evaluate at x = −1/2:

(a) P(x) = 6x3 − 2x2 − 3x + 7
(b) P(x) = 8x5 − x4 − 3x3 + x2 − 3x + 1
(c) P(x) = 4x6 − 2x4 − 2x + 4

3. Evaluate P(x) = x6 − 4x4 + 2x2 + 1 at x = 1/2 by considering P(x) as a polynomial in
x2 and using nested multiplication.

4. Evaluate the nested polynomial with base points P(x) = 1 + x(1/2 + (x − 2)(1/2+
(x − 3)(−1/2))) at (a) x = 5 and (b) x = −1.

5. Evaluate the nested polynomial with base points P(x) = 4 + x(4 + (x − 1)(1 + (x − 2)

(3 + (x − 3)(2)))) at (a) x = 1/2 and (b) x = −1/2.

6. Explain how to evaluate the polynomial for a given input x , using as few operations as
possible. How many multiplications and how many additions are required?
(a) P(x) = a0 + a5x5 + a10x10 + a15x15

(b) P(x) = a7x7 + a12x12 + a17x17 + a22x22 + a27x27.

7. How many additions and multiplications are required to evaluate a degree n polynomial
with base points, using the general nested multiplication algorithm?

0.1 Computer Problems

1. Use the function nest to evaluate
Solutions for

Computer Problems
numbered in blue can
be found at
goo.gl/D6YLU2

P(x) = 1 + x + ·· · + x50 at x = 1.00001. (Use the
MATLAB ones command to save typing.) Find the error of the computation by
comparing with the equivalent expression Q(x) = (x51 − 1)/(x − 1).

2. Use nest.m to evaluate P(x) = 1 − x + x2 − x3 + ·· · + x98 − x99 at x = 1.00001. Find
a simpler, equivalent expression, and use it to estimate the error of the nested
multiplication.

0.2 BINARY NUMBERS

In preparation for the detailed study of computer arithmetic in the next section, we
need to understand the binary number system. Decimal numbers are converted from
base 10 to base 2 in order to store numbers on a computer and to simplify computer

6 | CHAPTER 0 Fundamentals

operations like addition and multiplication. To give output in decimal notation, the
process is reversed. In this section, we discuss ways to convert between decimal and
binary numbers.

Binary numbers are expressed as

. . .b2b1b0.b−1b−2 . . . ,

where each binary digit, or bit, is 0 or 1. The base 10 equivalent to the number is

. . .b222 + b121 + b020 + b−12−1 + b−22−2

For example, the decimal number 4 is expressed as (100.)2 in base 2, and 3/4 is repre-
sented as (0.11)2.

0.2.1 Decimal to binary

The decimal number 53 will be represented as (53)10 to emphasize that it is to be
interpreted as base 10. To convert to binary, it is simplest to break the number
into integer and fractional parts and convert each part separately. For the number
(53.7)10 = (53)10 + (0.7)10, we will convert each part to binary and combine the
results.

Integer part. Convert decimal integers to binary by dividing by 2 successively and
recording the remainders. The remainders, 0 or 1, are recorded by starting at the dec-
imal point (or more accurately, radix) and moving away (to the left). For (53)10, we
would have

53 ÷ 2 = 26 R 1

26 ÷ 2 = 13 R 0

13 ÷ 2 = 6 R 1

6 ÷ 2 = 3 R 0

3 ÷ 2 = 1 R 1

1 ÷ 2 = 0 R 1.

Therefore, the base 10 number 53 can be written in bits as 110101, denoted as
(53)10 = (110101.)2. Checking the result, we have 110101 = 25 + 24 + 22 + 20 =
32 + 16 +4 + 1 = 53.

Fractional part. Convert (0.7)10 to binary by reversing the preceding steps. Multi-
ply by 2 successively and record the integer parts, moving away from the decimal point
to the right.

.7 × 2 = .4 + 1

.4 × 2 = .8 + 0

.8 × 2 = .6 + 1

.6 × 2 = .2 + 1

.2 × 2 = .4 + 0

.4 × 2 = .8 + 0
....

0.2 Binary Numbers | 7

Notice that the process repeats after four steps and will repeat indefinitely exactly the
same way. Therefore,

(0.7)10 = (.1011001100110 . . .)2 = (.10110)2,

where overbar notation is used to denote infinitely repeated bits. Putting the two parts
together, we conclude that

(53.7)10 = (110101.10110)2.

0.2.2 Binary to decimal

To convert a binary number to decimal, it is again best to separate into integer and
fractional parts.

Integer part. Simply add up powers of 2 as we did before. The binary number
(10101)2 is simply 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = (21)10.

Fractional part. If the fractional part is finite (a terminating base 2 expansion),
proceed the same way. For example,

(.1011)2 = 1
2

+ 1
8

+ 1
16

=
(

11
16

)
10

.

The only complication arises when the fractional part is not a finite base 2 expansion.
Converting an infinitely repeating binary expansion to a decimal fraction can be done
in several ways. Perhaps the simplest way is to use the shift property of multiplication
by 2.

For example, suppose x = (0.1011)2 is to be converted to decimal. Multiply x by
24, which shifts 4 places to the left in binary. Then subtract the original x :

24x = 1011.1011

x = 0000.1011.

Subtracting yields

(24 − 1)x = (1011)2 = (11)10.

Then solve for x to find x = (.1011)2 = 11/15 in base 10.
As another example, assume that the fractional part does not immediately repeat,

as in x = .10101. Multiplying by 22 shifts to y = 22x = 10.101. The fractional part of
y, call it z = .101, is calculated as before:

23z = 101.101

z = 000.101.

Therefore, 7z = 5, and y = 2 + 5/7, x = 2−2 y = 19/28 in base 10. It is a good exercise
to check this result by converting 19/28 to binary and comparing to the original x .

Binary numbers are the building blocks of machine computations, but they turn
out to be long and unwieldy for humans to interpret. It is useful to use base 16
at times just to present numbers more easily. Hexadecimal numbers are represented
by the 16 numerals 0,1,2, . . . ,9, A, B,C, D, E, F . Each hex number can be repre-
sented by 4 bits. Thus (1)16 =(0001)2, (8)16 = (1000)2, and (F)16 =(1111)2 =(15)10.
In the next section, MATLAB’s format hex for representing machine numbers will
be described.

8 | CHAPTER 0 Fundamentals

� ADDITIONAL
EXAMPLES

*1. Convert the decimal number 98.6 to binary.

2. Convert the repeating binary number 0.1000111 to a base 10 fraction.

Solutions for Additional Examples can be found at goo.gl/jVKlKJ
(* example with video solution)

0.2 Exercises

1. Find the binary representation
Solutions

for Exercises
numbered in blue
can be found at
goo.gl/8y092J

of the base 10 integers. (a) 64 (b) 17 (c) 79 (d) 227

2. Find the binary representation of the base 10 numbers. (a) 1/8 (b) 7/8 (c) 35/16 (d) 31/64

3. Convert the following base 10 numbers to binary. Use overbar notation for
nonterminating binary numbers. (a) 10.5 (b) 1/3 (c) 5/7 (d) 12.8 (e) 55.4 (f) 0.1

4. Convert the following base 10 numbers to binary. (a) 11.25 (b) 2/3 (c) 3/5 (d) 3.2 (e) 30.6
(f) 99.9

5. Find the first 15 bits in the binary representation of π .

6. Find the first 15 bits in the binary representation of e.

7. Convert the following binary numbers to base 10: (a) 1010101 (b) 1011.101 (c) 10111.01
(d) 110.10 (e) 10.110 (f) 110.1101 (g) 10.0101101 (h) 111.1

8. Convert the following binary numbers to base 10: (a) 11011 (b) 110111.001 (c) 111.001
(d) 1010.01 (e) 10111.10101 (f) 1111.010001

0.3 FLOATING POINT REPRESENTATION OF REAL NUMBERS

There are several models for computer arithmetic of floating point numbers. The mod-
els in modern use are based on the IEEE 754 Floating Point Standard. The Institute
of Electrical and Electronics Engineers (IEEE) takes an active interest in establish-
ing standards for the industry. Their floating point arithmetic format has become the
common standard for single precision and double precision arithmetic throughout the
computer industry.

Rounding errors are inevitable when finite-precision computer memory locations
are used to represent real, infinite precision numbers. Although we would hope that
small errors made during a long calculation have only a minor effect on the answer,
this turns out to be wishful thinking in many cases. Simple algorithms, such as Gaussian
elimination or methods for solving differential equations, can magnify microscopic errors
to macroscopic size. In fact, a main theme of this book is to help the reader to recognize
when a calculation is at risk of being unreliable due to magnification of the small errors
made by digital computers and to know how to avoid or minimize the risk.

0.3.1 Floating point formats

The IEEE standard consists of a set of binary representations of real numbers. A
floating point number consists of three parts: the sign (+ or −), a mantissa, which
contains the string of significant bits, and an exponent. The three parts are stored
together in a single computer word.

There are three commonly used levels of precision for floating point numbers:
single precision, double precision, and extended precision, also known as long-double

0.3 Floating Point Representation of Real Numbers | 9

precision. The number of bits allocated for each floating point number in the three
formats is 32,64, and 80, respectively. The bits are divided among the parts as follows:

precision sign exponent mantissa

single 1 8 23
double 1 11 52
long double 1 15 64

All three types of precision work essentially the same way. The form of a normal-
ized IEEE floating point number is

±1.bbb . . .b × 2p, (0.6)

where each of the N b’s is 0 or 1, and p is an M-bit binary number representing the
exponent. Normalization means that, as shown in (0.6), the leading (leftmost) bit must
be 1.

When a binary number is stored as a normalized floating point number, it is “left-
justified,” meaning that the leftmost 1 is shifted just to the left of the radix point. The
shift is compensated by a change in the exponent. For example, the decimal number 9,
which is 1001 in binary, would be stored as

+1.001 × 23,

because a shift of 3 bits, or multiplication by 23, is necessary to move the leftmost one
to the correct position.

For concreteness, we will specialize to the double precision format for most of the
discussion. The double precision format, common in C compilers, python, and MAT-
LAB, uses exponent length M = 11 and mantissa length N = 52. Single and long dou-
ble precision are handled in the same way, but with different choices for M and N as
specified above.

The double precision number 1 is

+1. 00 × 20,

where we have boxed the 52 bits of the mantissa. The next floating point number
greater than 1 is

+1. 0001 × 20,

or 1 + 2−52.

DEFINITION 0.1 The number machine epsilon, denoted εmach, is the distance between 1 and the smallest
floating point number greater than 1. For the IEEE double precision floating point
standard,

εmach = 2−52. ❒

The decimal number 9.4 = (1001.0110)2 is left-justified as

+1. 0010110011001100110011001100110011001100110011001100 110 . . . × 23,

where we have boxed the first 52 bits of the mantissa. A new question arises: How do
we fit the infinite binary number representing 9.4 in a finite number of bits?

We must truncate the number in some way, and in so doing we necessarily make
a small error. One method, called chopping, is to simply throw away the bits that fall

